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Abstract
Syntax-guided synthesis searches for an implementation of a
given specification by exploring large spaces of candidate pro-
grams. Sketches reduce these search spaces, making synthesis
more tractable, by predefining the structure of the desired im-
plementation. Typically, this structure is obtained through
human insight—this paper introduces a method for interac-
tive, tool-supported discovery of such structure. The key idea
is to decompose the specification into subcomputations such
that the decomposition dictates the sketch. We rely on a read-
ily obtainable specification that is nothing more than a finite
set of sample input-output pairs or execution traces of the
desired program. We introduce two complementary decom-
position operators and demonstrate them on case studies. We
find that our interactive methodology to discover structure ex-
tends the reach of computer-aided programming to problems
that cannot be solved with synthesis alone.

Categories and Subject Descriptors F.3.1 [Specifying and
Verifying and Reasoning about Programs]: Specification
techniques

General Terms Theory, Languages, Algorithms

Keywords Specifications, relational algebra, refinement, de-
composition

1. Introduction
Background Program synthesis enables a high-level ap-
proach to programming—the programmer provides a speci-
fication of the desired implementation, and a synthesis tool
automatically turns this specification into a correct imple-
mentation. The specification can take many forms, from a set
of input-output examples [14] to a logical formula [2] to a

reference implementation [34]. Given such a specification, a
synthesizer produces an implementation that is verifiably cor-
rect, often by searching a space of candidate programs from
the target implementation language (see, e.g., [2, 14, 15, 31]).
Such unrestricted search frees the programmer from having
to provide hints to the synthesizer, but it inherently limits
the size of a program that can be generated (to a few tens of
instructions in contemporary systems [15, 31]).

To illustrate, consider the toy problem of synthesizing the
sign function, given the following reference program as the
specification:

def sign_spec(x):
return (x == 0) ? x : x / abs(x)

Our goal is to obtain an implementation that avoids the
division and absolute-value operations, as specified below:

def sign_impl(x) :
return intExpr[x] // desired program: (x == 0) ? 0 : (x < 0) ? −1 : 1

grammar intExpr[identifier ...]:
intExpr = identifier ... | constant | boolExpr ? intExpr : intExpr
constant = 0 | 1 | −1
boolExpr = intExpr boolOp intExpr
boolOp = <= | < | > | >= | ==

The desired implementation is a program with an abstract
syntax tree of depth three, requiring three derivation steps
from the intExpr grammar. To find this program, a synthesizer
will need to search the space of all programs of depth three
or less—which includes roughly 131 million candidates.

One approach to reducing the size of this search space
is to supply the synthesizer with a sketch [4, 34], a partial
implementation that outlines the structure but not the details
of the desired computation. By spelling out the structure
of the computation, sketches can exponentially reduce the
search space and even decompose the problem into smaller
independent problems. For example, the following sketch
for our toy synthesis problem reduces the search space from
131× 106 to 6.4× 103 candidates:

def sign_sketch(x):
return boolExpr[x]:

return 0
else if boolExpr[x]:

return −1
else:
return 1



grammar boolExpr[identifier ...]:
boolExpr = intExpr boolOp intExpr
boolOp = <= | < | > | >= | ==
intExpr = identifier ... | constant
constant = 0 | 1 | −1

Thanks to its space-reducing power, sketching has enabled
practical synthesis for many application domains, including
dynamic programming algorithms [29], stencil computa-
tions [35], database programming [8], and automatic bug
fixing of student programming assignments [33].

Problem But where do sketches like sign_sketch come from?
Typically, the process of sketch construction is entirely
manual—the user or the designer of a synthesis tool has
an insight about the structure of the desired computation(s)
and expresses that insight with a partial implementation. In
this paper, we introduce a tool-assisted method for obtaining
a sketch from a specification. Our method starts with a speci-
fication and performs programmer-guided discovery of the
structure of the computation that is typically expressed in a
sketch. Formally, the method decomposes the specification
into its subcomputations; the structure of the decomposition
reveals the structure of the sketch, while the subcomputations,
in turn, define the specifications of the holes (i.e., the missing
details) in the sketch.

Approach Our approach relies on concrete specifications,
which describe desired program behaviors with a finite set of
input-output pairs or execution traces. Such a set of values
forms a finite relation, and we analyze a concrete specification
by decomposing its relational representation. For example,
the following relation is a concrete specification of the input-
output behavior of sign_spec on all 3-bit inputs:

x sgn(x)
-4 -1
-3 -1
-2 -1
-1 -1
0 0
1 1
2 1
3 1

Concrete specifications such as this one are easy to obtain
from reference implementations, from logical specifications,
or directly from the programmer.

We decompose concrete specifications with two comple-
mentary operators, which form the basis of our interactive
methodology for deriving the structure of a sketch. One op-
erator decomposes the entire relation into a cross product of
smaller relations (fewer columns in each smaller relation).
The other decomposes the relation into a union of smaller sub-
relations (fewer rows in each subrelation) such that each sub-
relation can itself be factored into a cross-product of smaller
relations. For example, the concrete specification for sign_spec

decomposes into three subrelations, each consisting of two
independent subcomputations:

x
-4
-3
-2
-1

× sgn(x)
-1 ∪ x

0 ×
sgn(x)

0 ∪
x
1
2
3

× sgn(x)
1

This decomposition translates directly into the structure of the
sign_sketch sketch—the desired computation is a case analysis
with three distinct cases, and each case is an independent
(constant) function over a subset of the input values. Our
interactive methodology for sketching exploits the ability of
the two operators to uncover case structure and independent
subcomputations from a specification.

Interactive methodology We describe a step-by-step pro-
cess for defining concrete specifications, for analyzing them,
and for translating the results of the analysis into a sketch,
which describes the desired modularized synthesis problem.
Some steps are fully automated, while others are interac-
tive, requiring the user to pose a hypothesis, not unlike in
debugging or other forms of interactive problem solving. We
describe two variants of our interactive method, which are
duals of each other.

The first method starts with a precise concrete specifica-
tion that includes exactly the desired behaviors of the pro-
gram. A precise concrete specification can be thought of as
a full functional specification of the program. Following our
first method, the user decomposes the specification, leading
to a structured sketch which is then completed by an off-
the-shelf synthesis tool. This method can also be used to
understand a concrete specification produced by a black-box
computation, even when the sketch itself is not desired.

The second method starts with a sketch and a partial
concrete specification that defines all acceptable behaviors
of a program. When some of these acceptable behaviors are
more desirable than others (e.g., some can be implemented
with a deterministic program while others cannot), the second
method helps the user refine the partial specification to obtain
a maximal set of desirable behaviors—that is, a precise
specification. An off-the-shelf synthesizer can then complete
the sketch to satisfy only the desirable behaviors.

Contributions In summary, this paper makes the following
contributions:

• The notion of concrete specifications, which unifies
the various notions of value-based specifications (e.g.,
example-based [14, 21] or trace-based [12, 13, 39]) that
have been proposed in previous work.

• Two decomposition operators that reveal the structure of
a computation expressed as a concrete specification. We
support these operators with efficient algorithms, which
scale to thousands of behaviors.

• Two interactive methods for using our decomposition
operators to derive sketches from precise specifications
and to refine partial specifications into precise ones.

• Three case studies that demonstrate our methodology and
the scalability of the supporting algorithms. The problems



tackled in the studies are all difficult or impossible to
complete without decomposition.

Outline The rest of the paper is organized as follows. We
first present our interactive methodology and illustrate its ap-
plication to synthesis-based program deobfuscation (Sec. 2).
We then describe a theory of lossless decomposition which
underlies our methodology (Sec. 3) and present the algo-
rithms for executing these decomposition operators (Sec. 4).
We illustrate our methodology on three case studies, apply-
ing it to deobfuscation, parsing-by-demonstration and angelic
programming (Sec. 5). The paper concludes with a discussion
of related work (Sec. 6) and a brief summary of contributions
(Sec. 7).

2. Overview
To illustrate our interactive synthesis methodology, consider
the problem of synthesizing a deobfuscated version of the toy
program in Fig. 1a. That is, we wish to understand what the
program is computing and synthesize a functionally equiva-
lent but understandable implementation. While this program
is artificial, one can imagine performing the same steps to
translate legacy assembly code into a modern language or a
minimized JavaScript code snippet to a program that eluci-
dates the webpage functionality.

The program toyk takes as input two signed k-bit values
and produces a 2k-bit output. Given only this program as
a reference, we want to find a more readable program that
performs the same computation. To accomplish this goal, we
will develop a sketch of the readable program and use syntax-
guided synthesis to fill in the missing expressions. We show
how to develop such a sketch by decomposing a concrete
specification for toyk with our interactive approach.

2.1 Example: Sketching Programs for Deobfuscation
An easy way to deobfuscate toyk is to create a sketch [34]
of a simpler implementation and then use program synthesis
to complete the sketch automatically. A sketch is a partially
implemented program containing “holes” to be filled with
expressions. A program synthesizer searches for expressions
that fill the holes correctly—in our case, the completed sketch
must be functionally equivalent to toyk.

The simplest sketch consists of a single hole, to be filled
with an expression from a grammar of all possible programs,
such the one shown in Fig. 1b. Using operators found in the
original program, the sketch gives grammars for expressions,
predicates and statements. It then goes on to define the desired
program Tk to be a sequence of guarded statements. While
this sketch is expressive enough to capture the computation,
its generality poses two problems. First, it induces a search
space that is too large for a synthesizer to explore efficiently.
Second, it places insufficient constraints on the syntactic form
of candidate programs—even if a solution were found, it may
be as complex as the original program.

To make the search tractable, and the resulting program
syntactically simple, the sketch needs to be sufficiently de-
tailed. Ideally, it should include a breakdown of the deobfus-
cated implementation into procedures and an outline of each
procedure’s control structure. For example, Fig. 1c shows one
such sketch, and Fig. 1d shows a completion of this sketch.
But going from the original program toyk to the sketch in
Fig. 1c is nontrivial. We propose a way of taking a specifi-
cation and understanding the inherent structure required to
compute that specification. The programmer can then use the
results of this analysis to write a sufficiently detailed sketch
that a synthesizer can complete.

2.2 Concrete Specification
Most specification analyses (e.g., [9, 10, 28]) work on logical
specifications that describe acceptable program behaviors
implicitly, as formulas. Such specifications are expressive,
succinct, and amenable to algebraic reasoning and symbolic
solving. But they are also rarely available in practice.

We focus on analyzing concrete specifications, which can
easily be obtained in practice. A concrete specification de-
scribes the set of acceptable concrete behaviors of a program
explicitly, as tuples in a database relation. These tuples con-
sist of concrete values and represent, for example, traces
of program states or legal input-output pairs. As such, they
can be observed from a reference implementation, extracted
from a test suite, provided directly by the programmer, or
enumerated from a logical specification.

Unlike logical specifications, concrete specifications can
only describe finite sets of acceptable behaviors. They are
therefore rarely complete descriptions of a computation—
unless the computation is a finite function, a concrete specifi-
cation is an underapproximation of its full set of behaviors.
These underapproximate descriptions, however, still capture
useful properties that can help the programmer arrive at a
desired implementation. For example, given a set of program
traces, dynamic invariant detection [12] can discover likely
invariants of the underlying computation by inferring prop-
erties over program variables that hold for every trace. The
resulting properties can then be used to automatically repair
errors [27].

Fig. 2 shows a concrete specification T for our example
program toyk, obtained by recording the output of toyk on
all pairs of signed 2-bit values (i.e., x, y ∈ [−2, 1]). Each
behavior (row) in T consists of the bits comprising one
input/output triplet: t3t2t1t0 = toy2(x1x0, y1y0). This low-
level representation of behaviors enables us to discover the
subcomputations of toyk, if any, relating the individual bits of
input and output.

2.3 Lossless Decomposition
We discover structure in concrete specifications with the
help of two complementary lossless decomposition operators
(Sec. 3). Lossless product decomposition (LPD) finds the
best way to decompose a specification relation into a cross



def toyk(x, y):
t1 = k − 1
t2 = x >> t1
t3 = − x
t4 = t3 >> t1
t5 = − t4
t6 = t2 | t5
t7 = −1 << k
t8 = ~t7
t9 = t6 & t8
t10 = y << k
t11 = t9 | t10
t12 = 1 << k
t13 = t11 + t12
t14 = t7 << k
t15 = ~t14
t = t15 & t13
return t

// grammar of simple expressions
grammar expr[id]:
expr = id | lit | expr op expr | uop expr
lit = integer literal
op = + | − | ∗ | << | >> | & | |
uop = ~

// grammar of simple predicates
grammar pred[id]:
pred = expr[id] op expr[id]
op = < | <= | ==

// grammar for statements
grammar statement[id]:
statement = expr | id = expr | return expr

// grammar for guarded statements
grammar statements[id]:
statements = {if pred[id]: statement[id]}∗

// sketch of the desired program
def Tk(x, y):
statements[x, y]

def Hk(y):
return expr[y] << k

def Lk(x):
return expr[x]

def Tk(x, y):
// low order k-bit mask
low = ~(−1 << k)
// high order k-bit mask
high = low << k
// combine L and H
return Lk(x) & low | Hk(y) & high

def Hk(y):
return (y+1) << k

def Lk(x):
if x < 0:

return −1
if x > 0:

return 1
return 0

def Tk(x, y):
// low order k-bit mask
low = ~(−1 << k)
// high order k-bit mask
high = low << k
// combine L and H
return Lk(x) & low | Hk(y) & high

(a) (b) (c) (d)

Figure 1: An obfuscated program (a). To understand this program, we would like to synthesize a program from a sketch (b),
which defines a space of possible programs. But to scale sketching to larger problems, we instead need to provide a structured
sketch (c). Solving a refined version of the sketch (c) leads us to the desired program (d).

x1 x0 y1 y0 t3 t2 t1 t0
1 0 1 0 1 1 1 1
1 0 1 1 0 0 1 1
1 0 0 0 0 1 1 1
1 0 0 1 1 0 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 0 1 1
1 1 0 0 0 1 1 1
1 1 0 1 1 0 1 1
0 0 1 0 1 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0
0 1 1 0 1 1 0 1
0 1 1 1 0 0 0 1
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 1

Figure 2: Concrete specification T for toyk in Fig. 1a, obtained
by applying toy2 to all pairs of 2-bit inputs and recording the
output

T =

L
x1 x0 t1 t0
1 0 1 1
1 1 1 1
0 0 0 0
0 1 0 1

×

H
y1 y0 t3 t2
1 0 1 1
1 1 0 0
0 0 0 1
0 1 1 0

Figure 3: An LPD for the concrete specification in Fig. 2.
This decomposition inspired the structured sketch in Fig. 1c.

product of smaller relations, each of which represents a
concrete specification of an independent subcomputation. If
a relation has no independent subcomponents, our second
operator, lossless union-of-products decomposition (LUPD),
can be used to restructure it into a union of decomposable
refinements—that is, subsets of the original specification. This

union consists of all maximal specification refinements that
can be expressed as products of smaller relations. Together,
these two operators enable us to discover independence and
case structure of a concrete specification (and its underlying
computation), as shown next.

Independence Analysis with LPD Figure 3 shows the LPD
decomposition of our example specification T (Fig. 2), which
exposes two independent subcomputations in toyk (Fig. 1a).
In particular, LPD infers that T can be decomposed into
two smaller relations, L and H , whose cross-product yields
the behaviors of T . This decomposition proves that the
computations described by L and H are fully separable—
an arbitrary choice of a behavior from L, which computes the
low-order bits of the output from x, can be combined with an
arbitrary behavior from H , which computes the high-order
bits of the output from y, to obtain a legal behavior in T .
We can therefore implement L and H with two independent
procedures and combine their results.

The sketch in Fig. 1c captures this independence structure.
The bodies of the two procedures, Lk and Hk, contain one hole
each that, we hypothesize, can be filled with simple arithmetic
expressions. An off-the-shelf synthesizer [36] validates this
hypothesis for Hk and its specificationH in seconds, replacing
the hole with the expression y + 1. Indeed, it is easy to see
that H specifies addition-by-1 for signed 2-bit numbers:
t3t2 = y1y0 + 1. But no simple expression is found for
Lk and L, indicating that Lk needs further refinement.

Case Analysis with LUPD The computation described by
L lacks independent subcomputations in that LPD(L) =
L. The LUPD operator provides a way to decompose a
specification like L into a union of (possibly overlapping)



L =

x1 x0

1 0
1 1

× t1 t0
1 1 ∪

x1 x0

0 0 ×
t1 t0
0 0 ∪

x1 x0

0 1 ×
t1 t0
0 1

def Lk(x):
if pred[x]:

return expr[x]
if pred[x]:

return expr[x]
return expr[x]

Figure 4: The LUPD of the concrete specification L from
Fig. 3 and the refined sketch for the function Lk from Fig. 1.

refinements that satisfy a given independence hypothesis.
These hypotheses state that certain parts of the specification
should be decomposable from each other. For example, Fig. 4
shows the LUPD decomposition of L, a union of three
maximal refinements in which the output bits are independent
from the input bits. This decomposition reveals that we can
compute L with a compact case-analysis on the value of x.
In particular, the number of cases to be considered (three) is
smaller than the number of all (four) possible values that x
can take.

The sketch in Fig. 4 captures this case structure. We
hypothesize that each case corresponds to a simple arithmetic
expression. This time, the synthesizer completes the sketch
in seconds, producing an implementation of the sign function
(as shown in Fig. 1d).

Generalizing Analysis Results Given that we performed
the analysis and sketching on a concrete specification for
2-bit inputs, it is natural to ask whether these results gen-
eralize to larger input spaces. We confirmed that they do.
Repeating the analyses on concrete specifications of toy4,
for example, yields analogous decompositions to those we
have seen for toy2. Similarly, the implementation of Lk and
Hk, as well as the overall deobfuscated program, are gen-
eral: toyk(x, y) =Tk(x, y) for all k ≤ 32. We speculate that
this generalizability effect—which also appears in our case
studies (Sec. 5)—is due to the capacity of concrete specifi-
cations to capture the essential structure of the underlying
computation, which remains constant as the problem scales.

Dual Problem In the toyk example, we used our decompo-
sition operators to interactively derive a structured sketch
from a precise specification. We introduce a dual problem, in
which the programmer starts with a structured sketch and a
partial concrete specification that contains acceptable but un-
desirable behaviors. The goal in this problem is to strengthen
the specification to a desirable subset of the original tuples,
so that the holes can be synthesized according to this stronger
speculation. In Sec. 5.3, we show how the programmer can
use the LPD and LUPD operators to find this desired subset.

3. A Theory of Lossless Decomposition
In this section, we formalize the notion of concrete specifica-
tions and present our theory of specification decomposition.
We start with the simpler of the two operations, lossless prod-
uct decomposition (LPD), and show that, while a specification

may have many LPDs, it has a unique finest LPD. As such,
the finest LPD reveals the best inherent decomposition of
a specification into mutually independent components. Intu-
itively, this step decomposes the original problem into smaller
components that can be represented as separate holes in the
sketch, and possibly be individually synthesized.

If this best decomposition is still too coarse for a given ap-
plication, we show how to express the specification, with the
help of lossless union-of-products decomposition (LUPD), as
a union of stricter specifications (technically, refinements of
the original specification), each of which exhibits the finest
LPD of the desired granularity. The LUPD of a specification,
like its finest LPD, is unique. This decomposition allows
the programmer to learn about and validate the structure of
the sketch. By adjusting the granularity of each refinement’s
LPD the programmer can trade off the complexity of each
refinement with the total number of refinements, which corre-
sponds to trading off complexity of each hole in the sketch
with the complexity in the structure of the sketch.

3.1 Concrete Specifications
We represent specifications as database relations with set
semantics (Def. 1). A relation is a set of tuples that map
attributes to values. Each tuple represents a valid program
behavior, and each attribute describes a distinct aspect of
that behavior (e.g., the value of a variable at a specific point
in an execution). We display relations as tables, with rows
representing tuples and column names representing attributes.

Definition 1 (Relation). A relation R is a finite set of tuples,
defined over a finite set of attributes. A tuple is a function
from the relation’s attributes, denoted by attr(R), to values
of any type. An attribute is a name drawn from an infinite set
of identifiers. We view tuples both as functions and as sets of
attribute-value pairs.

Despite its simplicity, our notion of concrete specifications
is general enough to accommodate all forms of finite descrip-
tions of program behaviors. In Sec. 2, we saw an example
(Fig. 2) of a concrete specification whose behaviors represent
valid input / output pairs for a program. But behaviors can
also represent execution traces (Sec. 5.3) or even just program
outputs (Sec. 5.2). As long as the descriptions of individual
behaviors are finite, it is easy to represent them as a relation
over the same set of attributes: we define each tuple to map
irrelevant attributes (for which the represented behavior has
no value) to a distinguished bottom value.

3.2 Lossless Product Decomposition (LPD)
Lossless product decomposition (LPD) breaks a specification
into a set of relations that yield the original specification
when combined with (relational) cross-product (Def. 2).
A specification may have many LPDs. For example, the
specification in Fig. 2 has two LPDs: the specification itself
(i.e., the trivial LPD) and the LPD shown in Fig. 3.



{{x1, x0, t1, t0}, {y1, y0, t3, t2}}

Figure 5: The LAP for the LPD in Fig. 3.

Definition 2 (Lossless Product Decomposition). A set of
relations P = {P1, . . . , Pk} is a lossless product decom-
position (LPD) of a relation R iff R = P1 × . . . × Pk

and attr(Pi) ∩ attr(Pj) = ∅ for all i 6= j. We define the
cross-product of two relations in the usual way: Pi × Pj =
{ti ∪ tj | ti ∈ Pi ∧ tj ∈ Pj}.

For small specifications, such as the toy example in Fig. 1,
it is easy to write down and examine an LPD, but for larger
examples this becomes unwieldy. We therefore introduce a
more compact formulation (Defs. 3-4) of the same concept,
which we call lossless attribute partition (LAP). An LAP is a
partition of a relation’s attributes that corresponds to an LPD.
Fig. 5 shows the LAP for the LPD in Fig. 3.

Definition 3 (Attribute Partition). A set of attribute sets
A = {A1, . . . , Ak} is an attribute partition for a relation
R iff attr(R) = A1 ∪ . . . ∪ Ak and Ai ∩ Aj = ∅ for all
i 6= j.

Definition 4 (Lossless Attribute Partition). An attribute par-
tition A = {A1, . . . , Ak} for R is lossless iff {ΠA1

R, . . . ,
ΠAk

R} is an LPD of R. The operator Π stands for relational
projection, where ΠAiR = {

⋃
a∈Ai
〈a, t(a)〉 | t ∈ R}.

LAPs and LPDs are equivalent formulations of the same
concept in that one uniquely determines the other. We can
obtain the LAP for an LPD P = {P1, . . . , Pk} by applying
the attr function to each relation in P : {attr(P1), . . . ,
attr(Pk)}. Similarly, we can obtain the LPD from an LAP
A = {A1, . . . , Ak} of R by projecting R onto each set in A:
{ΠA1R, . . . ,ΠAk

R}. In the rest of this paper, we will use
the two formulations interchangeably.

While a relation can have many LAPs—one for each
LPD—it has a unique finest LAP (Def. 5, Thm. 1) and,
correspondingly, a unique finest LPD. The finest LAP and
LPD for our toy example are shown in Figs. 5 and 3. In
general, the finest LAP for a specification is the finest-grained
partition of a relation’s attributes that is also an LAP. All other
LAPs can be obtained from the finest LAP by combining its
parts with set union (∪) to form coarser attribute partitions.
When ordered by the standard partition refinement relation
v (Def. 5), the LAPs for a relation form a lattice, with the
finest LAP as the bottom element. Our LPD decomposition
operation therefore returns the finest LAP / LPD as the best
(most informative) decomposition of a given relation.

Definition 5 (Finest LAP). An LAP A for a relation R is a
finest LAP iff R has no LAP B such that B 6= A and B v A.
We use the standard definition of partition refinement:B v A
iff ∀Bi ∈ B. ∃Aj ∈ A. Bi ⊆ Aj .

Theorem 1 (Uniqueness of the Finest LAP). Every relation
R has a unique finest LAP.

Proof. Suppose that a relation R has two distinct finest
LAPs, A and B. If A v B or B v A, we arrive at a
contradiction. If A 6v B and B 6v A, then there must
be two parts Ai ∈ A and Bj ∈ B such that Ai 6= Bj

and Ai ∩ Bj 6= ∅. Let C = Ai ∩ Bj , A′i = Ai \ C and
B′j = Bj \ C. Because A is an LAP for R, it follows
from Defs. 2-4 that {Ai, A \ Ai} is also an LAP for R.
Consequently, we have that R = (ΠAi

R × ΠA\Ai
R) =

(ΠA′
i∪CR×ΠA\Ai

R). Given this equality and the fact that
A′i ∪ C and A \ Ai are disjoint, we can use the definitions
of projection and cross-product to derive the following:
ΠBj

R = ΠBj
(ΠA′

i∪CR × ΠA\Ai
R) = (ΠBj

ΠA′
i∪CR) ×

(ΠBj
ΠA\Ai

R) = ΠBj∩(A′
i∪C)R×ΠBj∩(A\Ai)R = ΠCR×

ΠB′
j
R. This shows that Bj could be decomposed into two

finer parts, so B could not have been a finest LAP.

3.3 Lossless Union of Products Decomposition (LUPD)
Many concrete specification relations are only trivially de-
composed by the finest LAP. An example of this is the relation
L in Fig. 3, which has {attr(L)} as its finest LAP. To obtain
a better (finer) decomposition for a relation like L, we turn to
lossless union-of-products decomposition (LUPD) (Defs. 6-8,
Thm. 2).

LUPD enables the programmer to see all maximal
subsets—or, refinements—of a relation R that have a specific,
desirable attribute partition A as an LAP. The union of these
refinements, which we call maximal product components
(MPCs), is equal to R, and each is maximal in that it cannot
be augmented with any more tuples from R while continu-
ing to have A as an LAP. Together, the MPCs comprise all
possible ways to refine R into stricter specifications that are
themselves decomposable according to A.

When deobfuscating the toy example in Fig. 1, we used
LUPD to find all refinements of L (Fig. 4) that decouple
the input and output bits. We expressed this property of
the desired refinements by applying the LUPD operation
to L and the attribute partition A = {{x1, x0}, {t1, t0}}.
All of the resulting refinements have A as an LAP, and, as
such, they all specify functions in which the output bits are
independent from the inputs. Because this set of refinements
is exhaustive, we know that it fully captures the distinct
“cases” in the computation—if all of the refinements are
implemented separately and combined with a case statement,
no behaviors will be lost.

Definition 6 (Product Component). A relationQ is a product
component of a relation R w.r.t. an attribute partition A,
denoted by PC (Q,R,A), iff Q ⊆ R and A is an LAP for Q.

Definition 7 (Maximal Product Component). A product
component Q of a relation R w.r.t. an attribute partition
A is maximal, denoted by MaxPC (Q,R,A), iff there is no
relation S such that PC (S,R,A) and Q ⊂ S.

Definition 8 (Lossless Union-of-Products Decomposition).
A set of relations P = {P1, . . . , Pk} is the lossless union-



COMPUTELAP(R)

1 A← {}
2 rest ← attr(R)

3 while rest 6= ∅ do

4 a← choose(rest)

5 B ← PARTITION(a,ΠrestR)

6 rest ← rest \B
7 A← A ∪ {B}
8 return A

PARTITION(a,R)

1 B ← {a}
2 W ← WITNESS(B,R)

3 while W 6= ∅ do

4 B ← B ∪ W

5 W←WITNESS(B,R)

6 return B

WITNESS(B,R)

1 X ← ΠBR

2 Y ← Π(attr(R)\B)R

3 if (X × Y ) = R then

4 return {}

5 t← choose((X × Y ) \R)

6 x← πBt

7 y ← π(attr(R)\B)t

8 W ← (attr(R) \B)

9 for y′ ∈ Y s.t. x∪ y′ ∈ R do

10 W ′ ← {a | y(a) 6= y′(a)}
11 if |W ′| < |W | then

12 W ←W ′

13 return W

Figure 6: Algorithm to find the finest LAP for a relation R.

of-products decomposition (LUPD) of a relation R w.r.t. an
attribute partition A iff ∀Pi ∈ P. MaxPC (Pi, R,A) and
∀Q.MaxPC (Q,R,A) =⇒ Q ∈ P .

Theorem 2 (Uniqueness and Completeness of the LUPD).
Every relation R has a unique LUPD with respect to a given
attribute partition A, and this LUPD is complete in that
R =

⋃
P∈LUPD(R,A) P .

Proof. The proof follows directly from Def. 8.

4. Computing Lossless Decompositions
To automate lossless decomposition of relations, we have
designed two efficient algorithms for answering LAP and
LUPD queries. The COMPUTELAP algorithm finds the finest
lossless attribute partition, and the COMPUTELUPD algorithm
enumerates all maximal product components of a relation
induced by a given attribute partition. Both algorithms require
the input relation to be finite. We describe the algorithms in
detail in the rest of this section.

4.1 Computing the Finest LAP
We compute the finest LAP for a given relation R using the
algorithm in Fig. 6. The top-level procedure, COMPUTELAP,
is straightforward. Line 1 initializes the variable A, which
holds the constituent parts of the decomposition, to the empty
set; line 2 initializes rest , which holds the unpartitioned
attributes, to the set of all attributes of R. The main loop
then computes A by repeatedly choosing some attribute a
that has not yet been assigned to a part (line 4); finding the the
part B that contains a (line 5); and updating rest to exclude,
and A to include, B (lines 6-7).

The key step in the algorithm—finding the part B that
contains a given attribute—is performed by the procedures
PARTITION and WITNESS. Given an attribute a and a relation
R such that a ∈ attr(R), PARTITION computes the smallest
such part for a, with respect to R, as follows. We first
hypothesize that a is in a set B of its own (line 1). This
hypothesis is then tested by invoking WITNESS on B and
R (line 2). The WITNESS procedure, as explained below,
returns the empty set if R can be expressed as a cross product
of ΠBR and Πattr(R)\BR. Otherwise, it returns some, but
not necessarily all, attributes that belong in B. Because the
set of attributes returned by WITNESS may be incomplete,
the main loop of PARTITION (lines 3-5) keeps expanding B
with WITNESS attributes until {B, attr(R) \B} comprises
an LAP for R. We show below that WITNESS returns no
extraneous attributes—only the attributes that must be in B
are returned.

The WITNESS procedure works by first checking if
{B, attr(R) \ B} already comprises an LAP for R. Lines
1-3 implement this check as a straightforward application of
Def. 3. If the check succeeds, the procedure returns the empty
set (line 4). Otherwise, we choose (line 5) some tuple t not in
R, and split it into x and y such that x is in the projection of
R ontoB and y is in the projection ofR onto the complement
of B. We use πBt to denote the projection of a single tuple
t onto a set of attributes B. The chosen tuple is a witness
that B must contain some attributes in B’s complement. The
rest of the procedure (lines 9-13) collects and returns these
attributes, which comprise the smallest subset of B’s comple-
ment that the witness x ∪ y maps differently than the valid
tuple x ∪ y′.

To see that any non-empty set returned by WITNESS
contains no extraneous attributes, suppose that, at the end
of the loop, w contains one or more redundant attributes.
Denote these attributes with C. Then, by Def. 4, there is an
LAP {A1, A2} of attr(R) such that R = ΠA1

R × ΠA2
R,

B ⊆ A1 andC ⊆ A2 ⊆ (attr(R)\B). This and line 5 imply
that for any witness x∪ y, the following equalities must hold:

x ∪ y = (πA1
(x ∪ y)) ∪ (πA2

(x ∪ y))

= (x ∪ (πA1
y)) ∪ (πA2

y).

Since A2 ⊆ (attr(R) \ B) and y is chosen from
Π(attr(R)\B)R, we know that πA2y ∈ ΠA2R. As a result,
there must be a tuple e ∈ R such that πA2e = πA2y. Now, let
e′ be the tuple x∪ y′ ∈ R for which w = {a | y(a) 6= y′(a)}
on line 13. Because e, e′ ∈ R and {A1, A2} comprises an
LAP for R, there must be a tuple e′′ ∈ R such that

e′′ = (πA1
e′) ∪ (πA2

e) = (x ∪ (πA1
y′)) ∪ (πA2

y).

Rewriting e′′ as x ∪ y′′, where y′′ = (πA1
y′) ∪ (πA2

y), gets

{a | y(a) 6= y′′(a)} = ({a | y(a) 6= y′(a)}∩A1) = W ∩A1.

Given that C ⊆ W is both non-empty and contained in A2,
W ∩ A1 must be a strict subset of W , which means that



|{a | y(a) 6= y′′(a)}| < |W |. This, however, contradicts the
post-condition of the loop on lines 9-12, which guarantees
that the cardinality of W is minimal.

Correctness of the algorithm as a whole follows easily
from the correctness of WITNESS. The running time is at
most cubic in the size of R: this cost can be seen from line
5 in procedure WITNESS. In the worst case, |X × Y | is
O(|R|2), so computing (X × Y ) \R can take up to O(|R|3)
comparisons. We take the number of tuples in R as the
dominant cost since the number of attributes is negligible
in comparison.

Example. Fig. 7 illustrates an execution of the COMPUTE-
LAP algorithm on the concrete specification T from Fig. 1.
Each column in Fig. 7 represents one iteration of the main
loop of COMPUTELAP.

During the first iteration, the algorithm checks if x1

comprises a partition on its own, by trying to find a witness
to the contrary. We can find such a witness showing that x1

cannot be separated from some of the remaining labels. One
such witness is x∪y = {x1 7→ 0}∪{x0 7→ 0, y1 7→ 1, y0 7→
0, t3 7→ 1, t2 7→ 1, t1 7→ 1, t0 7→ 1}. Given this witness, the
algorithm chooses a minimal set of labels in y, W = {t1, t0},
such that the values of these labels in x∪ y can be changed to
get a tuple in ΠrestR (e.g., {x0 7→ 0, y1 7→ 1, y0 7→ 0, t3 7→
1, t2 7→ 1, t1 7→ 0, t0 7→ 0}).

At this point, the algorithm has found that {x1, t1, t0}
belong in the same partition, but must repeat the loop in
PARTITION to ensure that no other attribute has been left out.
It finds that x0 should also be added to the partition. During
the next iteration, no witness can be found (i.e., (X×Y ) = R
on line 3 of WITNESS), so we add B = {x1, x0, t1, t0} to A.

The algorithm then repeats the main loop of COMPUTE-
LAP, choosing a new attribute to form a part of the finest
LAP. The execution terminates when there are no attributes
remaining. The finest LAP for T is {{x1, x0, t1, t0}, {y1, y0,
t1, t0}}, as noted in the previous section.

4.2 Computing the LUPD
Given a relation R and an attribute partition A v {attr(R)},
we use the COMPUTELUPD algorithm in Fig. 8 to enumerate
all maximal product components of R with respect to A. If
A has a single part, then its LUPD is simply {R} (lines 2-3).
If A consists of two or more parts, then the problem of com-
puting the MPCs reduces to the problem of enumerating all
maximal bicliques [1, 23] in the bipartite graph representation
of R. In particular, given a partition {A1, A2} v {attr(R)},
a specification R can be encoded directly as a bipartite graph
(V1 ∪ V2, E) using the procedure G in Fig. 8. A maximal
biclique in this graph is a maximal subgraph of the form
(V ∪ V ′, V × V ′), where the subgraph relation is defined in
the usual way: i.e., V ⊆ V1, V ′ ⊆ V2 and V × V ′ ⊆ E. It
is easy to see that the subrelation corresponding to a maxi-
mal biclique in G(T, {A1, A2}) satisfies the definition of a
maximal product component (Def. 7). Hence, line 6 correctly

enumerates all maximal product components of R with re-
spect to {A1, A2}. The correctness of the algorithm in the
case of an A with more than two parts (lines 7-10) follows
by induction from the base cases.

Since there may be exponentially many maximal bicliques
in a given graph, the worst case running time of the COM-
PUTELUPD algorithm is exponential. In practice, however,
graphs that correspond to concrete specifications have a small
number of bicliques for any given decomposition. Our current
implementation enumerates them quickly using a SAT-based
constraint solver [37].

Example. Revisiting the example in Fig. 1, COMPUTELUPD
enumerates all maximal components of L with respect to
A = {{x1, x0}, {t1, t0}} as follows.

Since the maximal biclique subroutine works on two
partitions at a time, the algorithm creates a graph using L
and A and enumerates all maximal bicliques. There are three
such bicliques, (Vi ∪ V ′i , Vi × V ′i ). There is no need for a
recursive call and the algorithm returns the three maximal
components shown in Section 1. Fig. 9 illustrates the graph
created during the call to COMPUTELUPD.

5. Case Studies
We evaluated our interactive synthesis methodology by apply-
ing it to three case studies. In the first two studies, we employ
the methodology given in the overview, using a precise con-
crete specification to understand the inherent structure of the
computation. In the remaining study, we solve the dual prob-
lem, using a sketch and an imprecise concrete specification
to find a precise specification that satisfies the intuition of the
programmer.

The evaluation was designed to assess the applicability
of the decomposition analysis to writing structured sketches.
With our approach, we find that we can tackle problems that
are otherwise hard or impossible to solve through general
syntax-guided synthesis. We show how to use our operators
to discover recurrent structure in a computation (Sec. 5.1);
cluster similar behaviors in a noisy specification (Sec. 5.2);
and choose the best refinement of a non-deterministic specifi-
cation that leads to a deterministic implementation (Sec. 5.3).

Two of the problems we study involve specifications with
thousands of behaviors, which our algorithms decompose
in seconds. All three problems are hard (or impossible) to
solve without decomposition, either manually or using the
best available automatic techniques. While our evaluation
is limited to three application domains, we believe that the
results presented here generalize to other domains as well.

5.1 Synthesis-Aided Deobfuscation of Programs with
Loops

Our first application scenario is familiar: as in Sec. 2, we
want to synthesize an easy-to-understand implementation
of an obfuscated function. Unlike our toy example, the
computations we consider next involve loops and recursion.



COMPUTELAP(R) COMPUTELAP(R)
A = ∅ A = {{x1, x0, t1, t0}}
rest = {x1, x0, y1, y0, t3, t2, t1, t0} rest = {y1, y0, t3, t2}
PARTITION(x1, R) PARTITION(y1,ΠrestR)
B = {x1} B = {x1, t1, t0} B = {x1, x0, t1, t0} B = {y1} B = {y1, t3} B = {y1, y0, t3, t2}
WITNESS(B,R) WITNESS(B,R) WITNESS(B,R) WITNESS(B,ΠrestR) WITNESS(B,ΠrestR) WITNESS(B,ΠrestR)
X = {0, 1} X = {111, 000, 001} X = {1011, 1111, X = {0, 1} X = {11, 10, 00, 01} X = {1011, 1111,
Y = {0101111, . . .} Y = {01011, . . .} 0000, 0101} Y = {011, . . .} Y = {01, 10} 0000, 0101}
|Y | = 16 |Y | = 8 Y = {1011, 1100, |Y | = 4 |Y | = 2 Y = ∅
x ∪ y = 0 ∪ 0101111 x ∪ y = 000 ∪ 11011 0001, 0110} x ∪ y = 1 ∪ 001 x ∪ y = 11 ∪ 10 |Y | = 0
W = {t1, t0} W = {x0} |Y | = 4 W = {t3} W = {y0, t2}

Figure 7: Trace of COMPUTELAP as applied to the relation in Fig. 1. The finest LAP is {{x1, x0, t1, t0}, {y1, y0, t3, t2}}.

COMPUTELUPD(A,R)

1 switch A

2 case {A1} :

3 return {R}
4 case {A1, A2} :

5 B ← MAXBICLIQUES(G(R, {A1, A2}))
6 return

⋃
(V ∪V ′,V×V ′)∈B{V × V ′}

7 case {A1, A2, . . . , An} :

8 A′ ← A \ {A1}
9 G← MAXBICLIQUES(G(R, {A1,

⋃
2≤i≤n Ai}))

10 return
⋃

(V ∪V ′,V×V ′)∈G
⋃

M∈COMPUTELUPD(A′,V ′){V ×M}

G(R, {A1, A2})
1 V1 ← ΠA1

R

2 V2 ← ΠA2R

3 E ← {〈v1, v2〉 | v1 ∈ V1 ∧ v2 ∈ V2 ∧ v1 ∪ v2 ∈ R}
4 return (V1 ∪ V2, E)

Figure 8: Algorithm for enumerating all MPCs for a relation
R with respect to an attribute partition A v attr(R).

10 11 00 01 {x1, x0} 

11 00 01 {t1, t0} 

Figure 9: Graph of G(L, {{x1, x0}{t1, t0, }}).

As such, they cannot be deobfuscated by existing synthesis-
based techniques [15, 18], which can synthesize only loop-
free code. We instead deobfuscate each by employing our
interactive methodology to develop a structured sketch, which
can then be passed off to a synthesizer.

We consider two functions, Z andH , that operate on finite
precision integers. Each takes as input two k-bit integers
and produces a 2k-bit integer. Figures 10 and 14 show a
sample concrete specification for each function, obtained by
recording its output on every pair of k-bit inputs. Figure 11
illustrates the obfuscated (in reality, optimized) code for Z;
the implementation for H is similarly complex.

x1 x0 y1 y0 z3 z2 z1 z0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 1 0 0 0
0 0 1 1 1 0 1 0
0 1 0 0 0 0 0 1
0 1 0 1 0 0 1 1
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 1
1 0 0 0 0 1 0 0
1 0 0 1 0 1 1 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 1 1
1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1

Figure 10: A concrete specification, spec(Z), of Z for k = 2.

a, b, c = [...], [...], [...] // 3 arrays containing 256 constants each

def Z(x, y, z)
r = 0;
r = c[(z>>16) & 0xFF ] | b[(y>>16) & 0xFF ] | a[(x>>16) & 0xFF ]
r = r<<48 | c[(z>>8) & 0xFF ] |

b[(y>>8) & 0xFF ] | a[(x>>8) & 0xFF ]
r = r<<24 | c[(z) & 0xFF ] | b[(y) & 0xFF ] | a[(x) & 0xFF ]
return r

Figure 11: An obfuscated implementation of Z.

spec(Z) =
y1 z3
0 0
1 1

×
x1 z2
0 0
1 1

×
y0 z1
0 0
1 1

×
x0 z0
0 0
1 1

Figure 12: The finest LPD for spec(Z) (Fig. 10).

5.1.1 Deobfuscating Z
Figure 12 shows the finest LPD for Z. According to this LPD,
we can decompose Z’s specification into four simpler ones
that relate each output bit to a single input bit. In particular, Z
interleaves the input bits so that z2∗i = xi and z2∗i+1 = yi.
Fig. 13 captures this insight in a sketch, which is completed
by our synthesizer [36] in just a few seconds.1

5.1.2 Deobfuscating H
Our second function, H , can neither be synthesized by a
simple sketch nor broken down further by the finest LPD.

1 The function Z computes points on the G. M. Morton’s Z-order curve[26].



xi −→ z2∗i = xi<< expr −→ z2∗i
yi −→ z2∗i+1 = yi<< expr −→ z2∗i+1

expr := lit ∗ i+ lit

lit := 32-bit integer

Figure 13: An abstract sketch for Z based on the LPD shown
in Fig. 12. The sketch relates the ith bits of input to the
corresponding bits of output, using two holes constrained by
the expr grammar.

x2 x1 x0 y2 y1 y0 h5 h4 h3 h2 h1 h0

0 0 0 0 0 0 0 0 0 0 0 0...
...

...
...

...
...

...
...

...
...

...
...

1 1 1 1 1 1 1 0 1 0 1 0

Figure 14: A concrete specification, spec(H), of H for k = 3.
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...

...
...
∪

x2

0 ×
y2

1 ×
h5

0 ×
h4

1 ×
x1 x0 y1 y0 h3 h2 h1 h0

...
...

...
...

...
...

...
...
∪

x2

1 ×
y2

0 ×
h5

1 ×
h4

1 ×
x1 x0 y1 y0 h3 h2 h1 h0

...
...

...
...

...
...

...
...
∪

x2

1 ×
y2

1 ×
h5

1 ×
h4

0 ×
x1 x0 y1 y0 h3 h2 h1 h0

...
...

...
...

...
...

...
...

Figure 15: The LUPD of spec(H) (Fig. 14)
with respect to the attribute partition A2 =
{{x2, y2}, {x1, x0, y1, y0, h5, . . . , h0}}.

Instead, we use the LUPD operator to validate whether the
specification fits a particular sketch structure. We form the
following hypothesis about its case structure: the highest-
order bits of input, x2 and y2, jointly affect the behaviors
of H in a way that does not depend on any lower order
bits. Where did this hypothesis come from? Because the
finest LPD proves that none of the input bits affect any
output bits independently of others, our next guess is that
the function takes a few bits from each input—perhaps, the
bits in corresponding positions—and combines them to obtain
one or more bits of output.

Expressing our initial hypothesis as the partition A2 =
{{x2, y2}, {x1, x0, y1, y0, h5, . . . , h0}}, we obtain the LUPD
in Fig. 15. This reveals an interesting correlation: the finest
LAP of each maximal refinement of spec(H) is {{x2}, {y2},
{h5}, {h4}, {x1, x0, y1, y0, h3, . . . , h0}}, which means that
the two highest-order bits of input uniquely determine the
two highest-order bits of output, validating our hypothesis.
Since the LUPD is showing all possible refinements that
satisfy A2, we can see that each pair of high-order input bits
is combined with one specific pair of high-order output bits.

Our next hypothesis is that the pattern we observed for
the high-order bits generalizes to the remaining bits, as

x2 y2
↓ ↓
H2

↓ ↓
h5 h4

s1−−→

x1 y1
↓ ↓
H1

↓ ↓
h3 h2

s0−−→

x0 y0
↓ ↓
H0

↓ ↓
h1 h0

Figure 16: The structure of the computation performed by
H . The output bits h2∗i and h2∗i+1 are obtained from the
input bits xk . . . xi and yk . . . yi, where the value si stands
for xk . . . xi+1yk . . . yi+1.

xi −→ h2∗i+1 = expr −→ h2∗i+1

yi −→ h2∗i = expr −→ h2∗i
si −→ si−1 = expr −→ si−1

expr := var | lit | expr op expr
var := xi | yi | si

lit := 32-bit integer
op := & |ˆ| | |>> |<<

Figure 17: An abstract sketch for H based on the LUPD
analysis. The sketch computes the output bits h2∗i+1 and
h2∗i from the input bits xi and yi, as well as n-bit summary
si of the previous state of the computation. The grammar for
expr uses standard bitvector operations.

illustrated in Fig. 16. The figure expresses the hypothesis
that H computes its output bits from left to right, so that
h2∗i+1 and h2∗i are a function of xk . . . xi and yk . . . yi.
Note that we already know from Fig. 15 that xi and yi do
not determine h2∗i+1 and h2∗i by themselves—if they did,
then x1 and y1 would determine h3 and h2, causing each
maximal refinement in Fig. 15 to have an LAP of the form
{. . . , {x1, y1, h3, h2}, . . .}.

To check our new hypothesis, we obtain the LUPDs of
the highlighted (gray) specifications in Fig. 15 with respect
to the partition {{x1, y1, h3, h2}, {x0, y0, h1, h0}}.2 The re-
sulting LUPDs validate the hypothesis: each has 4 refine-
ments, and every refinement has the finest LAP of the form
{{x1}, {y1}, {h3}, {h2}, {x0, y0, h1, h0}}.

We can now either encode the structure from Fig. 16
directly into a sketch or try the stronger sketch illustrated
in Fig. 17. Our stronger sketch expresses the hypothesis
that H computes its output incrementally, using a recurrence
(i.e., H0 = H1 = H2). In particular, we guess that h2∗i+1

and h2∗i are computed from xi, yi, and si, which is an n-
bit summary of the previous state of the computation. Our
synthesizer completes the sketch in 5 minutes, finding that
n = 2 bits of summary are sufficient to implement H .3

5.2 Example-Based Clustering of Noisy Data
In our second case study, we develop a technique to to-
kenize a large set of strings by clustering together those
with similar tokenizations. The original problem comes from
the building science community, where sensors are used

2 We could also obtain the LUPD of the original specification with respect to
the partition {{x2, y2, h5, h4, x1, y1, h3, h2}, {x0, y0, h1, h0}}.
3 The function H computes points on the Hilbert curve[17].



1 grammar tokenization:
2 tokenization = {split}∗
3 split = integer literal
4

5 grammar pred[id]:
6 pred = id[int:int] == lit
7 int = integer literal
8 lit = string literal
9

10 grammar statements[id]:
11 statements = {if pred[id]: return tokenization}∗
12

13 def tokenize(name):
14 statements[name]

Figure 18: Sketch of a program that given a sensor name,
returns a tokenization. The program tokenizes a name certain
way based on whether the name matches a set of conditions.

to collect real-time information. Each sensor name is com-
posed of tokens [5, 32] that give information about the sen-
sor (such as the type or location) which assist in writing
building-applications. A commercial vendor often assigns
sensor names manually, in an ad-hoc manner, making fully
automated parsing impossible.

At first, this problem seems unrelated to our interactive
method. But imagine that there exists a program which
automatically tokenized a name. A sketch of such a program
is given in Fig. 18. One approach to tokenize the names is
to first group together names that are handled by the same
predicate. An expert could then manually label each set with
a tokenization. This decomposition closely resembles the
output of the LUPD operator, except it cannot be applied
since the tokenization is unknown. But we hypothesize that
since the names handled by the same predicate have the
same tokenization, they can be represented as the cross-
product of tokens, i.e., an LPD with an LAP derived from
the tokenization. We can therefore exploit this structure in
the names to find a cluster of names that share a tokenization.
Note that we do not need to synthesize concrete predicates
since the set of names is fixed.

Our technique tokenizes these names by asking an expert
to provide tokens for one name, and then uses the LUPD
analysis to discover a cluster of names with the same tok-
enization. We applied the technique to a set of 1532 sensor
names taken from a real dataset. On average, our tool cor-
rectly tokenizes 1464 names (96%) by asking the expert to
provide tokenizations for 91 of those names. This level of
precision is competitive with the best existing example-based
approach, with the additional benefit that our approach makes
it much easier for the expert to verify that the resulting tok-
enizations are correct.

5.2.1 Building Sensor Data
All sensor names in our sample dataset consist of 14 charac-
ters. While a building manager can parse these 14 characters
into tokens, there is no standard structure for an automated
system to use. For example, the manager tokenizes the name

1 def tokenize(names) {
2 output = {}
3 while (names != ∅) {
4 n = choose(names)
5 t = userTokenize(n)
6 p = expressAsPartitionOfStringIndices(t)
7 cs = computeLupd(p, names)
8 fs = cs.filter(c → return n in c}
9

10 for (f ← fs) {
11 if (verify(computeLPD(f))) {
12 for (name ← f) {
13 output[name] = t
14 names.remove(f)
15 } } } }
16 return output
17 }

Figure 19: Algorithm for tokenizing a set of sensor names.

‘SODA1C600A_ART’ as SOD A 1 C 600A_ ART . When
expressed in terms of string indices, this tokenization4 ap-
plies to several other names in the dataset, but the rest are
tokenized differently. The name ‘SODA2S14SASA_M’, for
example, is tokenized as SOD A 2 S 14 SASA_M .

5.2.2 Our Approach
We assign tokenizations to sensor names using the algorithm
in Fig. 19. We treat the names dataset as a concrete specifi-
cation. Each name in the set represents a behavior that maps
attributes [0..13] to characters. The algorithm starts by asking
an expert to provide the tokenization t for a randomly cho-
sen name n (lines 4-5). It then finds a cluster of names with
a similar structure, by obtaining the LUPD of names with
respect to the attribute partition corresponding to t (line 7).
We only keep the maximal refinements that include the name
n (line 8), as these are heuristically most likely to contain
names that should, in fact, satisfy the same predicate at n
and therefore be tokenized like n. The expert verifies this
heuristic guess (line 11) by examining the finest LPD of each
such refinement (see Fig. 20 for an example). If the guess is
correct, all names in the cluster are tokenized according to t
and dropped from the dataset. These steps are repeated until
all names are tokenized.

5.2.3 Alternative Approaches
Two alternate techniques exist for this problem. One approach
uses a hand-written Python script, which was difficult to
write and is difficult to maintain when new sensors are added.
The other approach, RegEx, synthesizes a regular expression
tokenizer from examples. Like our approach, the RegEx
algorithm alternates between asking an expert to tokenize
a single string n and parsing strings similar to n. Fig. 21
shows a few regular expressions generated on our sample
dataset. We evaluate our algorithm against RegEx below.

4 {{0, 1, 2}, {3}, {4}, {5}, {6, 7, 8, 9, 10}, {11, 12, 13}}



(a) 0, 1, 2
SOD × 3

A ×
4
1 ×

5
R ×

6, 7, 8, 9, 10
600A_
300__
180__
700A_

...

×

11, 12, 13
ART
ASO
ARS
AGN

(b) 0, 1, 2
SOD × 3

A ×
4
2 ×

5
S ×

6, 7
14 ×

8, 9, 10, 11, 12, 13
SASA_M
DP_STA
___DMP
___SMK

...

Figure 20: Refinements generated by the tokenizing of (a)
‘SODA1C600A_ART and (b) ‘SODA2S14SASA_M’.

^(SOD)(A)(.+?)(E)(.+?)_+?(RAT)$
^(SOD)(C)(.+?)(C)(.+?)(P)(.+?)_+?(STA)$
^(SOD)(A)(.+?)(R)(.+?)(RVAV)$
^(SOD)31NET___(TMR)$
^(SOD)_+?(BLD)_PR(ALM)$
^(SOD)(A)(.+?)(S)(.+?)_+?(P__VR)$
^(SOD)(C)(.+?)(P)(.+?)(DP_STA)$
^(SOD)(A)(.+?)(S)(.+?)_+?(DMP)$
^(SOD)34(BLD)_C_(SAS)$
^(SODA)_+?(CH)(.+?)_+?(CHWST)$

Figure 21: A subset of regular expressions generated by the
RegEx algorithm on our sample dataset.

# Correct % Correct # Examples
LUPD 1464 95.6% 91
RegEx 1489 97.2% 190

Table 1: Comparison of tokenization algorithms.

5.2.4 Evaluation
We compare our approach to RegEx by using the output of
the Python script as the ground truth. The script was written
in consultation with an expert, and we assume that it provides
the most accurate tokenization of our dataset. Since the results
of both our algorithm and RegEx depend on the order of
randomly chosen names, we executed each 10 times, using
the ground truth to answer queries posed to the expert. Table
1 presents the average precision and the number of expert
queries across all runs.

We found that our algorithm matches RegEx in precision,
while using half as many expert queries. Neither algorithm
achieves 100% precision, due to the inherent ambiguity in our
dataset (i.e., a few names can be tokenized in multiple ways).
But the results of our algorithm are much easier to verify. An
expert can do so visually, by inspecting a decomposition of
the kind shown in Fig. 20. RegEx, on the other hand, produces
a long list of regular expressions, which can only be verified
by applying them, in turn, to every name in the dataset. In
summary, our approach provides comparable precision to

RegEx, while requiring fewer expert queries and easing the
process of verifying the results.

5.3 Developing Algorithms with Angelic Programming

For our third case study, we use our interactive methodology
and angelic programming [6] to develop the Deutsch-Schorr-
Waite (DSW) algorithm for marking reachable nodes in a di-
rected graph. Angelic programming is similar to sketching: a
developer writes a program replacing tricky-to-implement ex-
pressions with holes. These holes represent non-deterministic
choice. But instead of producing an expression for each hole,
a solver, playing the part of an angelic oracle, dynamically re-
places each hole with a value such that the program terminates
successfully. The resulting sequence of angelically chosen
values forms a trace; in general, there are many valid traces
for a given input. The programmer observes these traces and
tries to generalize them to a deterministic implementation. A
key challenge in this process is to identify the subset of traces
that could be produced by a deterministic algorithm.

In this case study, we tackle the dual problem. The set
of angelic traces provides a partial concrete specification.
The desired concrete specification is the subset of traces that
correspond to an easily implementable algorithm (such a
constraint is difficult to encode in assertions, which leads
to undesired traces). We use the structure of the angelic
program and our decomposition operators to refine the partial
specification to develop a determinstic DSW algorithm.

5.3.1 Angelic DSW
Unlike graph marking with an explicit stack, the DSW algo-
rithm uses constant memory by cleverly reversing pointers in
the graph. Bodik et al. [6] developed an implementation of
DSW that hides the tricky pointer manipulations in a parasitic
stack—a data structure that behaves like a stack but borrows
storage from the host graph. Thanks to this formulation, DSW
can be written as a standard depth-first traversal (not shown
for brevity). The stack itself, however, is hard to implement
and was developed using angelic programming.

Fig. 22 shows the angelic implementation of a parasitic
stack. The choose(list) expressions denote non-deterministic
choice; the runtime angelically selects a value from the
provided list. The stack keeps just a single memory location
(line 2). Its push and pop methods work by borrowing and
restoring additional locations from the host graph.

In the original development of the parasitic stack, Bodik
applied DSW to the example tree in Fig. 23, obtaining 8040
traces. Their test harness constrained the angelic runtime (via
assertions) to look for executions that restore the tree to its
original state and use the same number of pushes and pops.
The resulting traces were examined manually to find a few
that can be implemented with deterministic expressions. We
now show how to find these desirable traces with just two
refinement steps, guided by our decomposition analyses.



1 ParasiticStack {
2 e = choose(nodes in g) // initialize one extra storage location
3

4 // ’nodes’ is list of nodes we can borrow from
5 def push(x : Node, nodes : List[Node]) {
6 // borrow memory location n.children[c]
7 n = choose(nodes)
8 c = choose(0 until n.children.length)
9

10 // value in borrowed location will need to be restored
11 v = n.children[c]
12

13 // select which 2 values to remember and where
14 e, n.children[c] = o.angelicallyPermute(x, n, v, e)
15 }
16 // ’values’ is a list of nodes that may be useful
17 def pop(values : List[Node]) {
18 // choose the location we borrowed in push()
19 n = choose({e} ∪ values)
20 c = choose(0 until n.children.length)
21

22 // v is the value stored in the borrowed location
23 v = n.children[c]
24

25 // select return value, restore the borrowed location, and update e
26 r, n.children[c], e = angelicallyPermute(n,v,e,values)
27 return r
28 }
29 }

Figure 22: Angelic implementation of the parasitic stack.

The key idea in the refinement step is to use the LUPD
operator with a partitioning inspired by the structure of the
sketch. Doing so creates components such that holes in each
partition are independent from each other. Since each parti-
tion corresponds to a piece of the sketch, the programmer can
then reason about each piece independently. Each component
also represents a different interface between the pieces of
the sketch. By examining each interface, the programmer
can choose which ones seem likely to be implementable and
refine the concrete specification to this set.

5.3.2 Decomposition Analysis
Our concrete specification of the parasitic stack consists of
the 8040 traces obtained by applying DSW to the example
tree in Fig. 23. Each trace represents a single behavior, which
maps dynamic invocations of choose expressions to their
angelically selected values.5

Fig. 23 shows, by means of colors, the finest LAP of our
specification. The angelic choices are visualized by the push
or pop operation in which they occur. Each push makes four
choices and each pop makes five; they select values for local
variables as shown in the figure. Choices with the same color
(red or yellow) all belong to the same part in the finest LAP.
Uncolored choices are independent of all others—they each
form their own singleton part.

The LAP reveals that the very first choose in the program,
which initializes the extra location e, cannot be decomposed
from other choices in the red part. This violates the intuition

5 We use execution indexing [40] to label the dynamic invocations of choose
so that the same invocation has the same label in every trace.
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Figure 23: Specification decomposition for a small input.
Colors show the finest LAP on the set of behaviors.

Analysis E[# values] E[# values] / length(trace)
Naive 1480 40
LPD/LUPD 276 7.5

Table 2: Comparison of the expected number of angelically
chosen values a programmer must examine to find a correct
trace. We also normalize this value by trace length (37) to give
a sense of the number of traces the programmer examines.

that the initialization value should be computed independently
of all other values. To find the behaviors matching this
intuition, we obtain the LUPD of the specification with
respect to the attribute partition {{e}, {. . .}}.

The resulting LUPD contains four maximal refinements of
the original specification, with three refinements containing
roughly 2,000 behaviors each and one refinement with 6,000
behaviors. In the smaller refinements, all behaviors map e
to the same node from the example tree—i.e., their finest
LPDs take the form e

n
× . . .× . . .

. . .
, where n is a node in

the example tree. In the larger refinement, however, e can be
bound to any node. The behaviors in this refinement overwrite
the location e before reading it, which matches a stronger
hypothesis: the initialization value is not only independent
of other choices in the program, but it can be any value. We
continue the analysis with the largest refinement.

Our next hypothesis is that the choose expressions in the
push method can be implemented independently of the choose
expressions in pop. We therefore use LUPD to decompose
the largest refinement into specifications that keep the push
and pop choices independent from each other. The resulting
decomposition consists of seven specifications. Examining
their finest LPDs, we find that one specification has similar
behaviors for all invocations of pop and all invocations of
push. This specification allows the angelic choices for pop to
make identical decisions, except for the choice of which child
location to borrow (line 20). It also allows the angelic choices
for push to make identical decisions except for which child
location to restore (line 8). This specification turns out to
contain precisely the traces that were previously [6] deemed
to demonstrate the algorithm.



5.3.3 Quantitative Evaluation
How much effort does the programmer save by using our
decomposition operators versus manually inspecting each
trace? As a proxy for measuring this effort, we count the
expected number of angelically selected values that the
programmer must examine. Table 2 summarizes our findings.

Without the decomposition operators, the programmer will
randomly select and examine traces until he finds a demon-
stration of the algorithm. The original set has 8040 traces,
each of length 37. Within this set, 200 traces correspond to a
correct algorithm. The programmer is expected to examine
40 traces until a correct trace is found, assuming random
selection without replacement. This leads to an expected cost
of 1480 values.

To analyze the cost of using the decomposition operators,
we consider each decomposition step in turn. The first step
separates the extra location choose from the rest of the trace,
leading to four maximal refinements. Each refinement has one
value for the location except for one which has four values.
Since the programmer only inspects the values of the extra
location choose, the cost is 7 values.

The next application of LUPD decomposes the specifica-
tion along function boundaries, leading to seven specifica-
tions. One specification contains precisely the 200 correct
traces. We assume the programmer will randomly draw and
examine values from each specification until he finds one
correct trace. Each specification is relatively small, ranging
from 54 to 80 values, giving an expected cost of 269 values.

In summary, our decomposition operators lead to a 5.3×
reduction in the expected number of values examined. Most
of the savings is a direct result of the compact representation
as a cross product of independent specifications. Another
source is the elimination of traces which do not fit the
programmer’s hypotheses.

6. Related Work
Concrete Specifications The notion of concrete specifica-
tions can be viewed as a generalization of other finite de-
scriptions of program behaviors, such as input/output (IO)
pairs or traces. IO pairs are widely used in program synthesis
(e.g., [14]) and testing (e.g., [21]). Previous uses of traces in-
clude invariant detection [12], trace based optimization [13],
and concurrency testing [39]. Concrete specifications capture
both notions, providing a unifying view of finite program
descriptions.

Decomposition A technique related to LPD is the lossless-
join decomposition (LJD) from standard relational algebra.
The goal of LJD is to remove redundancy by splitting a re-
lation R into relations R1 and R2 such that R1 ./ R2 = R.
This can be done if the functional dependencies of the re-
lation satisfy Heath’s Theorem [16]. Others have precisely
defined the notion of independence in relation algebra con-
text [30]. Unlike these approaches, there is no corollary to
Heath’s Theorem that corresponds to the notion of the LUPD.

Consequently, relational algebra provides no way to extend
the notion of the LJD to an arbitrary partition of attributes.

There has also been work in collecting, describing, and
composing/decomposing specifications, although these spec-
ifications generally take a different form than ours, such as
model transition systems[20, 38].

Others have proposed statistical methods that find prop-
erties inherent to a computation. Specification mining [3],
for example, uses program executions and machine learning
to create a state machine that represents implicit dependen-
cies and, therefore, implicit modularity in a program. But
statistical approaches could not compute the lossless decom-
positions produced by the (finest) LPD and LUPD.

Much work has also been done in trace analysis and clus-
tering. Traces are generated by debug statements of a pro-
gram, providing insight into its runtime state. Trace analysis
can detect anomalies, eliminate redundant traces [11], or clus-
ter similar traces together [24]. Our decomposition analysis
may be applicable in these settings as well.

The finest LPD analysis is closely related to Boolean func-
tion decomposition (e.g., [7, 19, 25]). Boolean truth tables are
a special kind of concrete specification, where all attributes of
a relation take on Boolean values. Boolean function decompo-
sition breaks a complex function f(X) into simpler subfunc-
tions h, g1, . . . , gn, such that f(X) = h(g1(X), . . . , gn(X)).
When applied to a truth table, the finest LPD produces a sim-
ple break down of f into a conjunction of formulas with
disjoint variables. Unlike the finest LPD, which can be com-
puted in polynomial time, general Boolean decompositions
are more expensive. They are usually computed using BDDs
or SAT solvers, but techniques involving relational algebra
have been used as well [22]. In contrast to Boolean decom-
position, our analysis is applicable to arbitrary relations, not
just functions over Booleans.

7. Conclusion
We introduced a new method for interactive, tool-supported
discovery of structure in a computation, and we showed how
to use the resulting structure to arrive at tractable sketches.
Our approach is based on the simple idea of decomposing
concrete specifications, which are relations that explicitly
enumerate the set of legal behaviors of a computation. We
designed two automated decomposition operators that help
discover independent subcomputations and case structure in
a computation. We demonstrated our operators on three case
studies, solving hard problems that cannot be solved with
synthesis alone.
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